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This paper investigates adaptive mesh grading in finite element solutions of the two-body 
Lippmann-Schwinger integral equation. Approximate solutions are obtained from both 
Galerkin and collocation projection methods using cubic spline approximants. The nodal 
points are chosen to be equidistributed with respect to a measure that combines both arc 
length and total curvature. 0 1988 Academic press. hc. 

1. INTRODUCTION 

Finite element methods have wide applicability for solving many types of 
equations. An intrinsic property of the finite element method is the “freedom” in the 
choice of mesh (nodal points in the case of one dimension and grid points in the 
case of multidimensions). The correct choice of mesh can improve the accuracy of 
the numerical solution. In fact, for many problems this choice of mesh may be more 
important than the particular approximation method. 

The basic idea behind adaptive schemes [ 1 ] is a procedure for the orderly dis- 
tribution of points that will optimize the solution with respect to some measure. 
Often, this measure is chosen to be the arc length or total curvature of the solution 
function [2, 31. A weighted combination of arc length and total curvature is the 
method adopted in this paper. Other examples are truncation errors, or a graded 
mesh such that the change in the solution function is equidistributed [4]. The 
procedure may of course be used iteratively. This does not necessarily increase the 
computer time because the truncation error may be improved so that accurate 
solutions are obtained with a small number of points. In some sense adaptive mesh 
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schemes may be viewed as a problem in control theory [S]: the input is some initial 
mesh, and with the solution on this mesh, the output is a new mesh. The new mesh 
in the parlance of control theory is our control function which in the present 
context yields a good choice of nodal points. 

Adaptive mesh schemes are a common tool for solving differential equations [ 11. 
The application of these techniques to the numerical treatment of integral equations 
is less well understood. 

If the mesh is repeatedly subdivided the scheme is usually referred to as an adap- 
tive mesh refinement (AMR). Our approach is to redistribute nodal points and this 
we shall refer to as an adaptive mesh grading (AMG). The purpose of this paper is 
to perform a numerical experiment using AMG procedures for solving an integral 
equation of the second kind 

f(s) = Y(S) - J‘I, MS, t) f(t) & -l<s<l, (1.1) 

where the inhomogeneous term y and the kernel K are given. Equations of this type 
arise in potential theory. Our particular example is the two-body Lippmann- 
Schwinger equation for quantum scattering by a Reid [6] potential. The kernel of 
the equation contains a Cauchy principal value singularity. Although the integral is 
defined over a semi-infinite domain, a standard technique of mapping the 
integration variable may be used to arrive at Eq. (1.1). 

For a sufficiently rapidly decreasing potential function (such as the Reid poten- 
tial) Eq. (1.1) is of the Fredholm type. Several approximation methods [7] are 
available for solving Fredholm integral equations of the second kind. Our approach 
is to approximate the solution function f on a subspace of cubic splines [S]. The 
expansion coefficients are then found by employing either a Galerkin method or a 
collocation method. As far as we are aware this paper is the first application of 
AMG to the numerical treatment of integral equations. 

Section 2 describes the AMG technique. Our physical problem and the integral 
equation are described in Section 3. Our numerical results are given in Section 4, 
and our conclusions in Section 5. 

2. ADAPTIVE MFLSH GRADING 

Let U(S) E C*[ - 1, 1 ] be a cubic B-spline approximation, defined on a partition 
71, = {x,.1 7 X,,*r . . . . x,,,, }, where xn,i > xn,i - 1. To be specific, let these ordered points 
be the nodal points described in the following section. Further, let 

c,=j-~;e,[l+($)2]“2ds, i = 2, ,.., n, 

Er=I::~~-,[1+(~)2]-3’21~ld~, i=2 ,..., n, 

(2.1) 

(2.2) 
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be the arc length and total curvature of u over the subinterval Ii = [x,+ , , x,,~]. 
Our approach to AMG is to attempt to equidistribute a weighted combination of 
the arc lengths 

a= i ai (2.3) 
i=2 

and total curvatures 

c= f ci. 
i=2 

(2.4) 

Let hi = x,,~ - x,,+ 1, and let U(S) represent an approximate solution of Eq. (1.1) 
defined on the mesh 7t,. On each interval Ii we compute Simpson’s rule 
approximations 

hi u:‘-, :’ 

[ 

I, 

“=6 (giel)’ +4(;;?;)3+& 1 
to ai and Ci, respectively. Here 

g; = [ 1 + (u;)‘] 1’2. 

(2.5) 

(2.6) 

The values of U’ and u” are given by the cubic spline approximation. 
The coefficients {ui} and (ci} are subsequently modified by normalization so that 

ic2 ui=ic2 ci= l. (2.8) 

Next, we define 

ki=(l-o)ai+oci, (2.9) 

where o represents some weighting factor. In order to damp extreme values and to 
increase the interval of influence we define the weighted means quantity 

Pi= f pjki+j-/y i = 1 -I- 2, . . . . n - 1, (2.10) 
j=O 

for inner subintervals and similar but one-sided weighted means for boundary sub- 
intervals. The value of I is chosen to fix the width of the interval of influence, while 
pj is again a weighting factor. 



76 EYREANDWRIGHT 

The measure of the arc length and total curvatures is obtained ultimately by 
integrating B to obtain 

si= c /3,> (2.11) 
I=2 

with S1 = 0. The table of values obtained from Si = S(X~,~) is used in inverse form, 
x,,~= s(S,), by equidistributing the quantities {bi} over n - 1 intervals. We now let 

ST = S,i/(n - l), 

and compute the new nodal points 

f,,i = s( s+ ) 
by linear interpolation. 

(2.12) 

(2.13) 

3. INTEGRAL EQUATIONS 

In this section we describe a numerical technique for solving integral Eq. (l.l), 
and show how this technique may be used to solve the physical problem. 

A. Projection Method 

The numerical approximation is a projection method using cubic splines. 
The integral equation (1.1) may be written as 

(~+W.f=y, (3.1) 

where 9 is the identity operator and X the integral operator 

Xf=s’ K(., t)f(t)dt. (3.2) -1 

Let rr, be a partition of the interval [ - 1, 1] by nodal points {x,,~}Y= ,, where 
- 1 = x,,~ < x,,~ < . .. <x,,, = 1. On this partition, together with the extended 
points, x,,-~ < x,,- , < x,,~ < x,,~ and x,,, < x,,, + r G x,,, + 2 < x,,, + 3, we construct 
cubic B-splines (B,,i);=+,,r [9]. Each function B,,i is nonzero on the interval 
Cxn,i-23 Xn,i+2 ), As trial functions we choose the linear combination 

n+l 

izo a*.iBMv 

where it remains to determine the coefficients {~~};=+d. 
Consider the residual function 

(3.3) 

n+l 

r = c ct,Jf + X) B,.i - y. 
i=O 

(3.4) 
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Let ( Y, @) denote the usual inner product on C E [ - 1, 11, 

(Y,@)=J1 Y(x)@(x)dx. 
-1 

(3.5) 

Let (@,,i};=+d be our chosen test functions. The coefficients {all,i};=‘,’ can be 
obtained by solving a system of linear algebraic equations 

(r, @n,i) = 03 i = 0, . . . . n + 1. (3.6) 

,In this paper we consider two examples, namely, 

0) @n,i = Bn i, , which is the Galerkin method, and 
(ii) @,,i(x) = 6(x - z,,~), { t,,i} E [ - 1, 11, which is the method of collocation. 

Notice that in the case (ii) the collocation points (t,,i};=+,’ need not coincide with 
any of the nodal points (x~,~};= 1. 

B. Quantum Scattering 

The nonrelativistic scattering of two particles is described by a partial wave 
k-matrix, M(q, K), which satisfies the integral equation 

Here rc is the incident momentum in the center-of-mass frame, q is a momentum 
variable, and u(q, q’) is the Fourier transformed potential. At scattering threshold 
K = 0. In the case of scattering above threshold, K > 0, the integral in Eq. (3.7) is 
evaluated with respect to a principal value prescription (here denoted by the 
symbol P). The function M(K, K) is real valued and can be expressed in terms of a 
phase shift 6(lc) by 

hf(K,K)= -[K Cot d(K)]-'. (3.8) 

We map the variable q onto a finite interval by 

1+x 
dx)=rt jy 7 ( > -l<x<l, 

where q is a constant scale parameter. (Note that q may be viewed as a means of 
changing the nodal points on [0, co). Since we seek an accurate result using a small 
number of points it is convenient to choose a value of 9 that yields the best 
preliminary solution.) Equation (3.7) becomes 

Equation (3.10) has the form of integral equation (1.1). 
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A complication arises from the principal value integral in Eq. (3.10) and for this 
we use the method of subtracting the singularity [lo]. For simplicity, let q = K, and 
consider the moment integral 

u(q(x)3 4’tx’)) Bn,i(x’) (3.11) 

where B,,i is nonzero at 0 E [x,,~ _ i , x,+1. Using the subtraction method, we write 

The integral in Eq. (3.12) may be evaluated using ordinary numerical quadrature. 

4. NUMERICAL RESULTS 

This section describes our numerical results. The potential u is chosen to be a 
nucleon-nucleon Reid [6] ‘S, soft-core potential. This potential is typical of the 
kind of phenomenological potentials that arise in nuclear physics. In momentum 
(Fourier) space this potential has the form 

(4.1) 

where pI =0.7fm-’ LJ*=4/&, pL3=7r%> V, = -10.463 MeV . fm -3, v2 = 
-1650.6 MeV .frnp3, and V, = 6484.2 MeV .frne3. We take fi2/m = 41.47 MeV .fm2 
(fi is Planck’s constant divided by 2n and m is the particle mass) and set rc2 to a 
scattering energy of 24 MeV. The scale parameter is chosen to be q = 10 fm - ‘. 

A reference solution is obtained by solving integral equation (3.7) using the 
Nystriim method [ 111. A description for the Nystriim method for solving integral 
equations of the second kind can be found in Ref. [7]. In [l 1 ] the points and 
weights are given by a Gauss quadrature rule that is exact for cubic splines. 
Figure 1 shows the reference solution M,,,(q(x), rc), where XE [ - 1, 11. The phase 
shift (defined by Eq. (3.8)) is ~5,~~. = 39.224”. We denote the error in the approximate 
phase shift, 6,, by 

AS=6,-6,; (4.2) 

The phase shift represents a single functional of the solution function. In order to 
obtain a more global estimate of the error in the approximate solution M,(q(x), K) 
we calculate the L2-norm of the error function 

AM = M,, - M,, , (4.3) 
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FIG. 1. Reference solution. q(x) = lO( 1 + x)/( 1 -x) and K = 0.7607 fin-‘. An arrow marks the 
on-shell point q = K. 

where the L*-norm is defined by 

(4.4) 

We remark that although the off-shell function M(q(x), K) is not a physically 
measurable quantity in two-nucleon scattering, it is required, for example, in 
few-body [12] calculations. For this reason it is useful to obtain an accurate value 
of this function. 

581/74/l-6 
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Our criterion for convergence of the AMG is based on an equidistribution of the 
quantities {pi} (Eq. (2.10)) so that 

is less than some specified tolerance. Here fi is the average value of (/Ii}. On 
interior subintervals we choose 1= 1, p0 = p2 = $ and p, = 4 in (2.10). On boundary 
intervals we use the relations fi2 = (2k, + k,)/2 and /I, = (k,- i + 2k,)/2. 

Our numerical approach is as follows: First, we obtain a preliminary solution of 
Eq. (3.10) using an initial mesh, which in our case has nodal points given by the 
formula 

x,,~= -cos[7c(i- l)/(n - l)], i=l n. , . . . . (4.6) 

Next we apply AMG iteratively. We denote the number of iterations by Z (I= 0 is 
the preliminary solution). The nodes that lie outside the interval [ - 1, l] are 
uniformly spaced to the left and right of the interval. These additional nodes which 
do not affect the spline approximation are left unaltered in our AMG procedure. 

We remark that the preliminary mesh (4.6) will reproduce the reference solution 
provided that a sufliciently fine mesh is used. As an example we quote the error in 
the phase shift LIS when n = 18 which is -0.004” for the Galerkin method and 
-0.015” for the collocation method. 

Our first results concern the Galerkin method. The phase shift error & is 
tabulated for several choices of n and o in Tables I-III. Table I shows results using 
n = 4 nodes while Table II shows results using n = 10 nodes. In Table I the AMG 
gives only marginal improvement in the calculated values of the phase shift and 
L2-norm. This in spite of the fact that for w = 0.25 we obtain a reduction of more 
than one order of magnitude in 0. In Table II the AMG gives significant 
improvement (more than one order of magnitude) in the calculated value of the 
phase shift and L2-norm. 

TABLE I 

Galerkin Solution with n = 4 Using Two Choices of w 

w=o w = 0.25 

I A6 IlAM 0 A6 IlAW, 0 

0 -2.0(l) 2.3( - 1) 7.3( -2) -2.0(-l) 2.3( - 1) 4.0( - 2) 
1 -4.9 8.3( -2) 2.0( - 2) -1.3(l) 1.7(-l) 1.2( -2) 
2 -2.6 6.3( -2) 1.8(-2) -1.0(l) 1.4(-l) 4.0(-3) 
3 - 1.9 6.6( - 2) 1.9( -2) -9.4 1.3( - 1) 1.9(-3) 
4 - 2.7 9.0( - 2) 1.9( -2) -9.0 1.3(-l) l.l(-3) 

Note. Results are shown for the phase shift error AS (degrees), the Lz-norm of the error function 
IlAMIIz, and o, after I iterates. 
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TABLE II 

Galerkin Solution with n = 10 

w=o w = 0.25 

I A6 IlA‘W2 c7 A6 II AMlIz d 

0 -3.5(-l) 1.6( -2) 2.3( -2) -3.5(-l) 1.6( -2) 2.0( - 2) 
1 -8.6(-2) 2.3( -3) 5.4( -3) -7.1(--2) 1.4(-3) l.l( -2) 
2 -2.O( -2) 3.6( -3) 1.9( -3) -5.1(-2) 1.4( -3) 6.1(-3) 
3 -2.6 4.8( -2) 1.4( -3) -2.9( -2) 1.7(-3) 4.1( -3) 
4 l.l(-2) 2.8( -3) 1.7( -3) -4.4( -3) l.O( -3) 2.8(-3) 
5 3.0( -2) 3.6(-3) 5.3( -4) -1.5(-2) 1.3( -3) 1.8( -3) 

One way to define convergence of the iterative procedure using AMG is to set a 
tolerance on the value of 6. For example, in Table I a tolerance of c = 2.0( -2) 
means that the AMG will converge for Z= 1, that is, after only one application of 
the AMG. We remark, however, that not all values of (r lead to a converged 
solution. 

The AMG sometimes leads to an oscillatory solution. An example is illustrated in 
Table III. The result for n = 4 using only total curvature (o = 1) has a solution that 
oscillates in a 4-cycle with d6 = -17, - 16, - 18, and - 15. The interior nodal 
points, the L*-norm and d are also seen to follow a pattern that repeats after 4 
iterations. Clearly, if in this example the tolerance is set to some value c < 5.6( -2) 
then convergence of the AMG is not possible. 

We now consider the behavior of the approximate solution M,(q(x), K) over the 
entire domain [ - 1, 11. Figure 2 illustrates the error AM for n = 4. We compare the 
preliminary solution with the p = 4 solution using only the arc length (w = 0). Also 

TABLE III 

Galerkin Solution with n = 4 Using Only the Total Curvature (o = 1) Showing an 
Oscillatory Behavior of the Interior Nodes, AS (degrees), ((AMllz, and c 

Interior nodes 

I x4.2 x4.3 

20 -3.47(-l) 
21 -3.33(-2) 
22 - 2.79( - 1) 
23 7.93( -2) 
24 -3.47(-l) 
25 -3.33(-2) 
26 -2.79(-l) 
27 7.93( -2) 

2.73( - 1) 
5.18( - 1) 
3.23( - 1) 
5.77( - 1) 
2.73( - 1) 
5.18(-l) 
3.23( - 1) 
5.77( - 1) 

AS 

-1.7(l) 
-1.6(l) 
-1.8(l) 
-1.5(l) 
-1.7(l) 
-1.6(l) 
-1.8(l) 
-1.5(l) 

IIAMII z 

2.0( - 1) 
1.9(-l) 
2.1(-l) 
1.8( - 1) 
2.0( - 1) 
1.9( - 1) 
2.1(-l) 
1.8( - 1) 

(r 

8.0( -2) 
5.6( -2) 
9.2( -2) 
9.0( -2) 
8.0( -2) 
5.6( -2) 
9.2( -2) 
9.0( -2) 
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FIG. 2. Galerkin solution for n = 4. Broken curve is the preliminary solution. Solid curve is the I= 4 
solution using arc length. Interior knots are shown for both the preliminary q and converged 0 mesh. 
An arrow marks the on-shell point q = K. 

shown are the interior knots: the values of the function at the nodal points. Of 
course, we do not expect the approximation to reproduce the large momentum tail 
of the reference solution using such a small number of nodal points. On the other 
hand, the effect of an AMG using arc length is to move the knots into a region 
where the solution has large values. Clearly, this result is an improvement on the 
preliminary solution. 

Next we turn to the collocation method. The placement of the collocation 
points {tn,i}l=+d is restricted by the Schoenberg-Whitney theorem [S, p. 200, 
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TABLE IV 

Collocation Solution with n = 4 

w=o w = 0.25 

I A6 IlAW2 0 A6 IlAW2 CT 

0 8.0 2.6( - 1) 7.0( -2) 8.0 2.6( - 1) 3.9( -2) 
1 6.0 1.4( - 1) 2.7( - 2) 1.4(l) 3.6( - 1) 3.5( -2) 
2 -3.7 7.7( -2) 1.7(-2) 5.1 1.2(-l) 1.4( -2) 
3 -9.3 1.5(-l) 1.q -2) 3.3(-l) 5.7( -2) 1.2( -2) 
4 -1.3(l) 1.9( - 1) 1.5( -2) -3.4 7.2( -2) 8.4( - 3) 
5 -1.5(l) 2.2( - 1) 5.8( -3) -5.3 9.6( -2) 6.1(-3) 

Theorem XIII.11 which requires that x,,~-~ -K t,,i < x,,~+ 2, i = 0, . . . . n + 1. For our 
preliminary solution we choose the collocation points 

t n.0 = X&l ; tn.1 = f(xn.1 + x.2); 

tn,i = xn,i7 i=2, . . . . n- 1; (4.7) 

t n,n = 4bn.n + XVI - 1); t,, + 1 = -%I. 

Consider an AMG for the collocation method. If nodal and collocation points 
move independently, an interval between nodes may contain no collocation point, a 
violation of the Schoenberg-Whitney theorem. In this case we can expect a poor 
result. One way to avoid the problem described above is to fix the collocation 
points with respect to the nodes by (4.7). This is the approach we have adopted for 
collocation. 

Table V shows results using n = 4 nodes, while Table V shows results using 
n = 10 nodes. Again the result for n = 4 show little improvement and for w = 0 
actually become worse after repeated application of the AMG. Table V shows the 
same kind of convergence we found using the Galerkin method in Table II. 

TABLE V 

Collocation Solution with n = 10 

o=o o = 0.25 

I A6 IlAW D A6 IlAW l7 

0 -5.9(-l) 1.8( -2) 2.4( - 2) -5.9(-l) 1.q -2) 2.3( -2) 
1 -1.6(-l) 2.6(-3) 5.9( -3) -3.6(-l) 4.4( - 3) 4.2( -3) 
2 -5.3(-2) 3.3( -3) 1.8( -3) -1.7(-2) 9.9( - 4) 1.2( -3) 
3 -1.0(-l) 3.7( -3) 8.2( -4) -1.5(-2) l.l(-3) 6.3( -4) 



84 EYRE AND WRIGHT 

5. CONCLUSIONS 

We have obtained accurate finite element solutions of the two-body Lippmann- 
Schwinger integral equation using both Galerkin and collocation methods. 
Application of the AMG technique can be used to improve the approximate 
solution by up to one order of magnitude in the computed phase shift and L2-norm. 
This represents a significant improvement in the approximate solution of the 
integral equation. 

We remark on some of the difficulties that arise when applying the AMG techni- 
que. If a coarse mesh is used then it is often difficult to obtain an improvement in 
the approximate solution. This is because a small number of nodes may not be able 
to reproduce the general structure of the solution function. A second difficulty is 
that for some combinations of arc length and total curvature we find that the nodal 
points oscillate; in this case the AMG may not reach a converged solution. This 
result serves as a warning against the blind application of adaptive mesh techni- 
ques. However, in those examples where we do find convergence it is noteworthy 
that the major improvement comes from the first few applications of AMG. This 
would suggest that AMG is a useful way of improving the finite element solution 
with little additional cost in computer time. 

REFERENCES 

1. J. F. THOMPSON, Appl. Numer. Math. 1, 3 (1985). 
2. C. M. ABLOW AND S. SCHECHTER, J. Comput. Phys. 27, 351 (1978). 
3. W. HAASE, K. MISEGADES, AND M. NAAR, Int. J. Numer. Meth. Fluids 5, 515 (1985). 
4. G. F. CAREY AND H. T. DINH, SIAM J. Numer. Anal. 22, 1028 (1985). 
5. W. C. RHEINROLT, Int. J. Numer. Meth. Eng. 17, 649 (1981). 
6. R. V. REID, JR., Ann. Phys. (N.Y.) 50, 411 (1968). 
7. K. E. ATKINSON, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of 

the Second Kind (SIAM, Philadelphia, 1976). 
8. C. DE BOOR, A Practical Guide to Splines (Springer-Verlag, New York/Heidelbe.rg/Berlin, 1978). 
9. C. DE BOOR, J. Approx. Theory 6, 50 (1972); M. G. Cox, J. Inst. Math. Appl. 10, 134 (1972). 

10. P. J. DAVIS AND P. RABINOWITZ, Methods of Numerical Integrarion (Academic Press, Orlando, 
1984). 

11. L. PRETORILJS AND D. EYRE, J. Comput. Appl. Mafh. 18, 235 (1987). 
12. W. GLOCKLE, The Quantum Mechanical Few-Body Problem (Springer-Verlag, Berlin/Heidelberg/ 

New York/Tokyo, 1983). 


